Consonant Changes: Ain't Misbehavin'?

In Greek, sometimes consonants undergo changes when they come into contact with other consonants. This happens in English. For ex., the prefix in- indicates negation, and we see it in a word like inability, meaning "no ability." But when we add in- to a word that begins with the letter " m ," in- changes to im-: in+mobile should become inmobile, but it actually becomes immobile. In+resistible should become inresistible, but it actually becomes irresistible. So, consonants in English, as in Greek, misbehave! But, there is some predictability to many of the sound changes, and I outline some important ones for you below that you need to start memorizing.

1. Labials $+\varsigma \rightarrow \psi$

The labial consonants are π, β, φ, and so:

$$
\begin{aligned}
& \pi+\varsigma \rightarrow \psi \\
& \beta+\varsigma \rightarrow \psi \\
& \varphi+\varsigma \rightarrow \psi
\end{aligned}
$$

2. Velars $+\varsigma \rightarrow \xi$

The velar consonants are k, γ, χ, and so:
$\mathrm{K}+\mathrm{s} \rightarrow \xi$
$\gamma+\varsigma \rightarrow \xi$
$\chi+\varsigma \rightarrow \xi$
3. Dentals $+\varsigma \rightarrow \varsigma$

Unlike the two above, the result of joining these letters does not produce a letter with a double sound ($\psi=\mathrm{ps}, \boldsymbol{\xi}=\mathrm{ks}$). Rather, the dental letter drops before the sigma. The dental consonants are τ, δ, θ, and so:

$$
\begin{aligned}
& \tau+\varsigma \rightarrow \varsigma \\
& \delta+\varsigma \rightarrow \varsigma \\
& \theta+\varsigma \rightarrow \varsigma
\end{aligned}
$$

Note, \#'s 1-3 above are part of your Noun Rule \# 7, the Square of Stops.
4. Other sound changes:
$v+s \rightarrow s$
[The nu drops, and usually the vowel right before nu undergoes compensatory lengthening. Remember how the acc m pl of λ ó o os is really λ ó $\gamma o v s$? The nu dropped (λ ó $\gamma \mathrm{o}-\varsigma$), and the omicro lengthens to the diphthong ou, resulting in入órous.]
$\mathrm{vt}+\mathrm{S} \rightarrow \mathrm{S}$
[The dental $\tau+\varsigma$ combination causes the tau to drops, leaving vऽ. But we have just learned that the nu in vs also drops, leaving the sigma alone.]
final $\tau+--\rightarrow-$
[This is another way of saying that when a word ends with tau, if you don't add any consonants to the tau, then the tau will always drop. I refer to this phenomenon as "throwing in the tau."] Note: this last one is your Noun Rule \#8.

